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ABSTRACT
In human-robot collaboration settings, each agent often has access

to private information (PI) that is unavailable to others. Examples

include task preferences, objectives, and beliefs. Here, we focus on

the human-robot dyadic scenarios where the human has private

information, but is unable to directly convey it to the robot. We

present Q-Network with Private Information and Cooperation (Q-

PICo), a method for training robots that can interactively assist

humans with PI. In contrast to existing approaches, we explicitly

model PI prediction, leading to a more interpretable network archi-

tecture. We also contribute Juiced, an environment inspired by the

popular video game Overcooked, to test Q-PICo and other related

methods for human-robot collaboration. Our initial experiments

in Juiced show that the agents trained with Q-PICo can accurately

predict PI and exhibit collaborative behavior.
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1 INTRODUCTION
Many human-robot collaboration scenarios are characterized by

the presence of private information (PI) that is not accessible by all

agents. For example, consider a robot that is attempting to assist

a human to serve juice at a juice bar. The human knows the juice
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Figure 1: The Q-PICo architecture during training phase
(best seen in color). The red Q-network depicts the agent ϕ
(human surrogate). The green Q-network represents for ro-
bot λ and the blue private information network (PIN) pre-
dicts θ ∈ Θ using ϕ’s actions. We train the Deep Q-Networks
(DQNs) using the losses Lϕ and Lλ and the PIN via Lθ .

preferences of each customer—the private information—but has

no direct way of conveying this information to the robot. In this

limited communication setting, the robot has to infer/predict which

juice it should help prepare by observing the actions taken by the

human; if the human is walking to a cabinet filled with apples, it

can deduce that the customer is likely craving for apple juice.

In this extended abstract, we propose a reinforcement learning

(RL) approach for training robots to assist in scenarios with private

information and limited communication. Prior work has demon-

strated the feasibility of jointly training cooperative agents using

a pair of deep recurrent Q-networks [2, 3] (one network acts as a

surrogate human). However, training such models can be difficult

and the resulting models are often hard-to-interpret black-boxes.

We circumvent this issue by separating the prediction of private

information from the control module. This separation enables us

to examine the robot’s belief of the private information during its

interaction with the human, thus allowing for a more interpretable

model and facilitating the training process.

We report on preliminary findings using an environment called

Juiced (Fig. 2). Inspired by the video game Overcooked, Juiced places

agents in a simulated juice bar where they are tasked to serve

customers with different orders. Only one of the agents (the human)

has access to the orders. We designed Juiced to be extensible; it

can be configured to simulate scenarios of varying difficulties. Our

initial experiments in a simple Juiced scenario show that (i) Q-

PICo-trained agents demonstrate collaborative behavior, and that

(ii) joint performance improves as the PI prediction improves.
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Figure 2: A simple example level in Juiced showing behavior
of the agents trained using Q-PICo. The customer (chicken,
right) wants apples. Time steps t and predicted private in-
formation θ ([apple, orange]) are shown for each frame. The
robot agent (top, blue) waits for the human agent to pick up
the apple before it delivers the correct fruit.

2 FORMULATION
Wedefine a cooperativemulti-agentMarkov decision process (MDP)

with private information as a tuple

〈
S,Λ,Θ, {Aλ }λ∈Λ ,R,T ,γ

〉
, where

S is a set of observations, Λ is a set of agents, Θ is a set of possible

private information, Aλ is a set of actions for λ ∈ Λ, R is a reward

function mapping from S ×A × Θ to R, T is a transition function

mapping from S × A × Λ × S to [0, 1], and γ ∈ [0, 1] is a discount

factor. To make our notation brief, we use A to represent

∏
λ∈ΛAλ .

Suppose that only one agent,ϕ ∈ Λ, knows the true private informa-

tion θ ∈ Θ. In our context, this agent ϕ is typically the human. The

objective of the agents is to find policies {πλ }λ∈Λ that maximize

the expected sum of discounted reward Gπ = E
[∑∞

t=0 γ
t rt

]
.

3 METHODOLOGY
Figure 1 illustrates the Q-PICo architecture during training phase.

We interleave training of the DQNs and the Private Information

Network (PIN), fixing one while we optimize the other for a fixed

number of iterations. When training the DQN for agent i , we mini-

mize the loss:

Li =
(
r (t ) + γQi

(
s(t+1),a

(t+1)
i , θ

(t+1)
i

)
−Qi

(
s(t ),a

(t )
i , θ

(t )
i

))
2

,

where r (t ) is the reward obtained at time step t , γ is the discount

factor, θ
(t )
ϕ = θ

∗
for all time steps t , and θ

(t )
λ =

ˆθ is the predicted θ

at time step t . When training the PIN, we regress the predicted
ˆθ

against the θ∗; we assume that θ∗ is available during the training
phase (the PI is unavailable at test time) and minimize the L2-norm:

Lθ = ∥ ˆθ (t ) − θ∗∥2.

4 EVALUATION & DISCUSSION
To evaluate the performance of Q-PICo, we set up a proof-of-

concept scenario where the maximum reward is attained only if

the robot correctly predicts the private information and acts ac-

cordingly. Our experiment used the Juiced scenario shown in Fig.

2. At every step, the agents can take one of 6 actions: do nothing,

interact with the object, move up, down, left, or right.

Each state is defined by 70 distinct entities (e.g., the agents,

fruits, barriers) and their corresponding positions in the 5 x 5 grid.

Reward

Q-PICo 1.9500 ± 0.0279

Ablated 1.2900 ± 0.0475

Figure 3: The reward obtained and the loss of the PIN dur-
ing the PIN training phase; lower PIN loss is correlated with
higher reward. The ablated network (without the PIN) ob-
tains lower reward.

Consider a single cell in the grid; we define a binary vector of length

70 whose j-th element is 1 if the j-th unique entity is in that grid

and 0 otherwise. We combine the vectors for all cells into a state

tensor s of size 70 × 5 × 5. At the beginning of each episode, we

randomly reassign the customer’s desired fruit to be either apples

(θ∗ = 0) or oranges (θ∗ = 1). The agents receive a reward of 1

every time they serve the correct item. To prevent any single agent

from completing the task by itself, we further restrict the episode

to terminate in 10 steps.

Fig. 1 illustrates the overall network architecture used in our

experiment. Briefly, for the forward pass of each DQN, the observa-

tion tensor s was fed it into a CNN, flattened, and appended with

θ . The resultant vector was fed into a fully connected network to

obtain a state-action value for each of the 6 actions. The structure

for the PIN is similar to the DQN and differs only in the addition a

gated recurrent unit (GRU) layer [1]. In total, we trained the DQNs

for 250,000 episodes and the PIN for 5,000 episodes using Adam.

We make two key observations from multiple sampled trajec-

tories (Fig. 2 shows a sample trajectory). First, the agents often

achieved themaximum possible reward of 2, suggesting that Q-PICo

framework is effective at training pairs of agents to exhibit collabo-

rative behavior. Second, agent λ always takes the corresponding

fruit only after agent ϕ, i.e., the robot waits for informative actions

to adapt its subsequent behavior. We also observed that the per-

formance of the agents improved as the MSE loss incurred by the

PIN decreased (Fig. 3). The reward obtained by an ablated model

(λ did not explicitly predict PI) is significantly lower, suggesting

the importance of the PIN. It may be possible to achieve implicit PI

prediction with a more complex network, but the model would be

less interpretable.

Moving forward, one limitation of Q-PICo is that the human

surrogate model may not be representative of actual human be-

havior. We are in the process collecting and integrating human

data into the training process to address this issue, and plan to

investigate more complex scenarios in future work. More broadly,

we believe Q-PICo and Juiced together represent an important step

towards interpretable and reproducible frameworks for training

deep policies that assist in realistic scenarios.
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