
Objective: The authors seek to characterize the 
behavioral costs of attentional switches between points 
in a network map and assess the efficacy of interven-
tions intended to reduce those costs.

Background: Cybersecurity network operators 
are tasked with determining an appropriate attentional 
allocation scheme given the state of the network, which 
requires repeated attentional switches. These atten-
tional switches may result in temporal performance 
decrements, during which operators disengage from 
one attentional fixation point and engage with another.

Method: We ran two experiments where partici-
pants identified a chain of malicious emails within a net-
work. All interactions with the system were logged and 
analyzed to determine if users experienced disengage-
ment and engagement delays.

Results: Both experiments revealed significant 
costs from attentional switches before (i.e., disen-
gagement) and after (i.e., engagement) participants 
navigated to a new area in the network. In our second 
experiment, we found that interventions aimed at con-
textualizing navigation actions lessened both disengage-
ment and engagement delays.

Conclusion: Attentional switches are detrimental 
to operator performance. Their costs can be reduced 
by design features that contextualize navigations 
through an interface.

Application: This research can be applied to the 
identification and mitigation of attentional switching 
costs in a variety of visual search tasks. Furthermore, 
it demonstrates the efficacy of noninvasive behavioral 
monitoring for inferring cognitive events.

Keywords: attentional processes, cybersecurity, adap-
tive automation, visual search, interface evaluation

As dependence on networked systems has 
increased, the global vulnerability to cyber 
crime has grown (Goutam, 2015). This trend is 
mirrored by the growing number of yearly 
cyber attacks (Ben-Asher & Gonzalez, 2015), 
with the net economic cost of data breaches 
expected to exceed $2 trillion by 2019 (Moar, 
2015). A significant investment in cybersecu-
rity measures is therefore necessary for the 
protection of organizational activities and 
finances. Despite computational safeguards 
such as antivirus software and firewalls 
(Alrajeh, Khan, & Shams, 2013), any suffi-
ciently large network remains vulnerable to 
attacks (Ahmad, Hadgkiss, & Ruighaver, 2012). 
In these instances, active network monitoring 
(ANM) is necessary.

ANM is the process of detecting, diagnosing, 
and mitigating the effects of network intrusions 
or attacks (D’Amico, Whitley, Tesone, O’Brien, 
& Roth, 2005). This task is extremely complex 
given the magnitude and distribution of the net-
works (Mitropoulos, Patsos, & Douligeris, 
2006), the coordination required between opera-
tors (Tyworth, Giacobe, & Mancuso, 2012; Wer-
linger, Muldner, Hawkey, & Beznosov, 2010), 
significant time pressure and stakes (Khan, 
Gani, Abdul Wahab, Shiraz, & Khan, 2016), and 
the difficulty of determining an appropriate 
course of action for each unique attack (Wer-
linger et al., 2010). These challenges necessitate 
heavy reliance on decision support systems 
(DSSs). A typical cybersecurity DSS detects 
anomalous or malicious behavior by comparing 
both the current overall state and individual 
activities of the network against both the 
expected activity under nonattack conditions 
and known attacks (Ashfaq & Khayam, 2011). 
These relationships are then depicted in tables, 
which often provide scores for elements in the 
network, and graphs that support understanding 
of patterns of data and alerts.
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The meaning of an element’s score differs 
from system to system, but it is generally a func-
tion of the probability and the cost of malicious 
behavior within that element (Ashfaq & 
Khayam, 2011). For example, moderately 
anomalous behavior in an important server 
would elicit a higher score than highly anoma-
lous behavior from a low-level email account. 
Operators combine scores with network graphs 
to understand how alerts are distributed to iden-
tify functional relationships (Franke & Bryniels-
son, 2014). Operators then use this higher order 
understanding of the system to determine how to 
allocate their attention (Hopf, Boehler, Schoen-
feld, Heinze, & Tsotsos, 2010; Olszewski, 2014; 
Pfleeger & Caputo, 2012).

Operators are required to repeatedly deter-
mine where to focus their attention among a 
multitude of viable options. This near-constant 
demand for attention allocation, coupled with 
extreme information quantity, is likely to result 
in cognitive bottlenecks, which are performance-
limiting constraints in the information flow 
between the system, the human, and the situa-
tion (Dorneich, Whitlow, Ververs, & Rogers, 
2003). Bottlenecks have been studied in percep-
tion (Salvucci & Taatgen, 2008), response selec-
tion (Nobre & Kastner, 2014), and memory 
(Borst, Taatgen, & van Rijn, 2010), as well as 
across domains like driving (Donmez, Boyle, & 
Lee, 2006) and command and control (Dorneich, 
Mathan, Ververs, & Whitlow, 2007). While sev-
eral cognitive bottlenecks are likely to be impli-
cated in ANM, we focus on bottlenecks stem-
ming from visual attentional switching here. 
Attentional switching is the process of moving 
one’s focus from one point to another and con-
sists of three phases: disengagement from cur-
rent fixation point, shifting to a new location, 
and engagement of a new fixation point (Posner 
& Presti, 1987). We concentrate our analysis on 
the cognitive costs of the disengagement and 
engagement phases of the attentional switch.

Although engagement and disengagement are 
separated by the shifting phase, they are closely 
related. For example, engagement with a new 
target is hindered if participants need to first dis-
engage from an initial target (Duncan, 1980). 
Ettwig and Bronkhorst (2015) corroborated this, 
showing that even when a previously perceived 

stimulus is masked, switching attention to a new 
information stream is hindered, a finding 
explained as a need to disengage from the masked 
stimuli even after it has disappeared. Dombrowe, 
Donk, and Olivers (2011) found that eye saccade 
accuracy and speed were significantly hindered 
when participants were asked to scan a series of 
targets of different colors, illustrating the poten-
tial performance decrements incurred from atten-
tional switches. Longman, Lavric, and Monsell 
(2017) showed that allowing participants to pre-
pare for an upcoming switch lessened the cost of 
switching but did not eliminate it. The common 
thread in the above research is that there is a clear 
cost incurred from disengaging from a previous 
attentional fixation and engaging with a new one. 
In real-world settings, where a large number of 
attentional switches are necessary, the cumula-
tive cost of disengaging and engaging with tar-
gets could be detrimental to performance. We 
investigated this relationship in an ANM setting 
that more closely approximated real-world tasks 
than did the paradigms used to attain the evi-
dence presented above.

This paper describes two studies, whose 
respective principal aims were to (1) examine 
how attentional switches impact operator behav-
ior in ANM and (2) determine the efficacies of 
two interventions aimed at mitigating the nega-
tive effects of attentional switches.

Overall MethOd
experimental Platform, Participants, 
and Scenario design

Our experiments were conducted on a plat-
form that allowed for the representation and 
visualization of a communication network, pro-
vided users with the tools to inspect elements 
within that network, and allowed users to tag 
elements as normal, suspicious, or malicious 
(see Figure 1; Kortschot et al., 2017). The net-
work was populated with the 2015 version of 
the Enron Email Corpus (https://www.cs.cmu 
.edu/~./enron/), which is a public dataset of 
real emails. The visualization of the network 
was simple, with nodes representing users and 
edges representing emails. Each email in the 
network had a score, which was the probability 
that it contained malicious content. Users could 
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zoom in on areas of the network and inspect an 
email by either selecting it from a list or directly 
on the network map. They could also click on 
users (i.e., nodes) in the network map and view 
all of their outgoing emails. The Top-K slider 
displayed 0 to 10 of the highest scored emails. 
For example, if the Top-K slider was set to 1, it 
would highlight the single email in the network 
map with the highest score (see Figure 1).

We used a machine learning text classifier to 
determine the score for every communication in 
the network. This classifier was trained to detect 
anomalous content in the networks used in our 
experiments. Over the course of each trial, it 
then learned to increase the scores of emails 
similar to those tagged as malicious and decrease 
the scores of emails similar to those tagged as 
normal. Scores were represented in two ways. 
First, a recommendation list was presented 
beside the network map that showed the score. 
Second, the score was represented by the degree 
of redness of the edges representing the emails, 
with more redness indicating a higher score. 
Scores were updated after each tag applied by 
the user.

A logging system recorded all click actions as 
well as what object was clicked on. In addition 

to the action itself, the state of the viewport (i.e., 
the portion of the network map currently visible 
in the left panel of Figure 1) at the time of the 
action was also recorded. This included infor-
mation such as the visible nodes, the percent of 
the network that was in view, and the center 
position of the viewport within the network. 
From these details, we were able to derive all 
zooming and panning behavior for later statisti-
cal analyses.

A population of qualified security or network 
operations center operators was not available to 
us. In their place, we recruited a sample of engi-
neering students as participants. The skills and 
competencies of these participants imposed a 
significant limitation on the complexity of both 
the simulated network and the experimental 
tasks. We scaled down the complexity of both 
the network and the tasks by using a small, static 
network and by asking participants to perform a 
relatively simple search and inspection task. 
This was aimed at emulating the cognitive 
demands of expert operators in full-scale sys-
tems, which hinges on the assumption that the 
cognitive tolerance of novice operators is a frac-
tion of that of experts. A formal analysis of  
the accuracy of this scaling procedure was not 

Figure 1. The experimental platform developed for the present study. The network map is in 
the left pane, while the details pane is on the right. Note that the Top-K slider (bottom-right) is 
currently set to 1, which reveals the top ranked message on the network map.
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conducted, and therefore, this represents a limi-
tation in our study.

In both experiments, participants attempted 
to uncover a chain of malicious emails sharing 
common characteristics that were indicative of 
their maliciousness. These chains were island-
hopping in nature, meaning that the target email 
jumped between adjacent users. This encour-
aged interaction first with the recommendation 
list to identify the first email in a chain and then 
with the network map to explore adjacent areas 
of the network.

All research herein complied with the Ameri-
can Psychological Association Code of Ethics 
and was approved by the Institutional Review 
Board at the University of Toronto. Informed 
consent was obtained from each participant.

Passive data Monitoring (PdM)
We employed a PDM approach with logged 

interaction data to form inferences regarding 
attentional switching. PDM derives data from 
interactions that are inherent to the task so that 
subsequent analyses can determine if patterns 
in user interaction align with certain cogni-
tive events or states. PDM is an alternative to 
identifying cognitive events by actively col-
lecting biometric data through methods such 
as eye tracking or electroencephalogram (EEG; 
Palmius et al., 2016). For example, engage-
ment with novel stimuli has been found neuro-
logically to be represented in the dorsal stream 
(Janczyk & Kunde, 2010). Therefore, one could 
outfit participants with EEG and infer engage-
ment periods by detecting when the subject 
was experiencing these neurological processes. 
However, the prospect of outfitting civilian net-
work operators who work long, sedentary shifts 
with intrusive EEG equipment is unrealistic. 
The efficacy of PDM has been demonstrated in 
map navigation (Aoidh, Bertolotto, & Wilson, 
2012) and depression onset detection (Palmius 
et al., 2016).

PDM pairs well with the ANM domain for 
three reasons. First, integrating a robust logging 
program to passively monitor user interactions 
is relatively easy since the vast majority of the 
user’s interactions are done at the desktop 
(Goodall, Lutters, & Komlodi, 2009). Second, 
information about the system state and the  

content of displays is also readily available and 
time-stamped (Corchado & Herrero, 2011). 
Finally, ANM is a highly interactive domain 
(Werlinger et al., 2010), allowing for sufficient 
operator behavior to be recorded to make reli-
able inferences.

exPeriMent 1
Motivation

The principal objective of our first experi-
ment was to examine the behavioral impact of 
attentional switches in ANM. Our secondary 
objective was to evaluate the efficacy of PDM 
in ANM.

Methods
Participants. We recruited 18 engineering stu-

dents via an emailed advertisement (9 male, 9 
female, Mage = 21.5, SD = 2.89). None of the par-
ticipants had prior experience in cybersecurity or 
prior knowledge of the experimental platform, 
paradigm, or hypotheses. Participants were paid 
CAD 30.00 for 2 hours of participation.

Experimental platform. The version of the 
platform used in Experiment 1 is the same as 
that presented in Figure 1 with a slightly lower 
contrast color scheme. Participants had the 
option to sort the recommendation list by any of 
its columns. Participants were able to use the 
Top-K message slider to provide spatial context 
for the emails that had the highest scores associ-
ated with them, which was useful for determin-
ing if there were any clusters of recommendations 
in the network map.

Participants were able to explore the layout of 
the network by zooming and panning (Supple-
mentary Material S1; the online supplementary 
material is available with the manuscript on the 
HF website). Zooming allowed users to expand 
the network such that a smaller portion of it 
occupied a larger portion of the viewport (i.e., 
zooming in). Panning allowed the users to 
remain zoomed in and to click and drag the net-
work map to bring adjacent areas into their 
viewport.

Scenario design. Each scenario was con-
structed around one of four worm attacks. 
Worms are self-replicating codes that propagate 
through adjacent machines (Li, Salour, & Su, 



966 November 2018 - Human Factors

2008). They represent a fairly intuitive class of 
cyber attack that novices could grasp given suf-
ficient training. Each worm was marked by a 
unique characteristic that reflected a real-world 
scenario. The first worm was marked by some 
of the text within the body of the email being 
replaced with punctuation marks. The second 
was marked by the text inviting users to click on 
a suspicious website URL. The third asked 
users to update their passwords for a financial 
server. The fourth worm had some text that was 
out of order. While the marker was consistent 
within each worm, the actual text and subject 
lines differed such that the exact same email 
was not simply being forwarded along. This 
forced the users to read the content of the emails 
rather than identify their structure at a glance. 
Users were tasked with flagging all of the 
emails in the chain as malicious.

Experimental design. Two machine learning 
algorithms for updating the scores of emails 
were evaluated. However, it was not hypothe-
sized that they would have any effect on atten-
tional switches. Our results confirmed this, and 
therefore, the alternative algorithms will not be 
described further here.

No experimental manipulations used in Experi-
ment 1 were pertinent to the goal of understand-
ing attentional switching in ANM. Instead, we 
divided all actions within trials into two 
labels: viewport-actions and non-viewport-
actions. Viewport-actions included panning 

and zooming inputs. Non-viewport-actions 
included tagging, sorting, and inspecting actions. 
There are four possible sequences of these two 
action-classes, which align with the three phases 
of an attentional switch, plus a control condition 
(see Figure 2). Each of the action-classes repre-
sents an independent variable and were analyzed 
as follows:

 • Control: the time it took participants to initiate 
non-viewport-actions that were preceded by non-
viewport-actions.

 • Disengagement: the time it took participants to 
initiate viewport-actions that were preceded by 
non-viewport-actions.

 • Shifting: Consecutive viewport-actions were treated 
as one action, with the initiation time being the 
time of the first action in the sequence, and the 
completion time being the completion time of the 
last action in the sequence. This was done because 
multiple pans or zooms were typically required for 
the participants to achieve their desired viewport.

 • Engagement: the time it took participants to ini-
tiate non-viewport-actions that were preceded by 
viewport-actions.

The underlying rationale for using action 
latency as a measure of the impact of attentional 
switches is that if users experienced a cost from 
an attentional switch caused by either disengag-
ing from their previous viewport or engaging 
with their new viewport, that should be reflected 

Figure 2. Timeline illustrating how the different sequences of action-class are treated in the 
data analysis. The figure illustrates how a viewport-action (i.e., Actions 3 and 4) changes the 
content of the viewport. The action latencies of interest are those of the second action in each 
of the action sequences (Actions 2, 3, and 5).
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by an increase in action latency, during which 
the disengagement or engagement processes 
would be occurring.

We used completion time as the sole perfor-
mance metric due to ceiling effects with tagging 
accuracy (average of 90% accuracy across par-
ticipants and trials). Completion time was mea-
sured as the time of the final malicious tag in 
each trial. If participants failed to tag all emails 
in a worm, the completion time for that trial was 
set to the maximum trial length of 15 minutes.

Given our use of PDM over gathering bio-
metric data (e.g., eye-tracking), our operational 
definition of an attentional switch deviates from 
that of Posner and Presti (1987), as we solely 
examined extraviewport attentional switches. 
This operationalization sacrifices precision for 
practicality and accepts that we are missing 
attentional switches within viewports, asking 
the question of whether we can still characterize 
the effects of attentional switches in spite of this 
loss of precision.

Procedure. Participants were led through a 
PowerPoint presentation describing the compo-
nents of the platform and their corresponding 
control actions (Supplementary Material S2). It 
also introduced them to the recommendation 
table and gave a high-level description of the 
machine learning algorithms driving the adapta-
tions in the interface.

Participants were then introduced to the 
experimental task—searching for and tagging 
worms that consisted of between 5 and 8 emails 
hidden within the network. They were given 
examples of the four markers of worms that they 
would be looking for and told that each worm 
would be defined by one of these markers. Their 
principal objective was to find the origin of the 
worm, and their secondary objective was to tag 
the rest of the emails in the worm as malicious. 
A strategy for how best to combine information 
in the recommendation table with the network 
map was described and demonstrated to partici-
pants. Participants were not trained to criterion. 
Instead, the experimenter judged their compe-
tency with the platform prior to advancing from 
the training phase. We do not feel that this repre-
sents a significant limitation in our research as 
our analyses focused on the execution of indi-
vidual actions rather than overall performance. 

Each participant completed four trials, and each 
trial had a new worm.

results
All actions with latencies of 0 seconds were 

removed from analysis, as these represented 
double clicks. Following this, the top and bot-
tom 1% of action latencies were removed from 
the dataset to remove both long pauses that 
were not representative of any engagement 
or disengagement processes and inadvertent 
clicks (Aguinis, Gottfredson, & Joo, 2013). This 
removal process retained actions with latencies 
between 0.015 seconds and 10.08 seconds.

Participants performed an action every 0.64 
seconds (SD = 1.27 seconds) on average. The data 
were heavily skewed, so we used a Wilcoxon 
Rank-Sum test to identify differences in action 
latencies between the control actions and the 
actions corresponding to disengagements and 
engagements (see Figure 2). We found significant 
disengagement delays (M = 1.45 seconds; z = 
28.60, p < .0001) and engagement delays (M = 
1.53 seconds; z = 35.42, p < .0001) compared to 
control actions (M = 0.57 seconds). Figure 3 
illustrates the distribution of action latencies 
across control actions, disengagements, and 
engagements.

We also compared average disengagement 
and engagement delays against completion time 
and did not find a significant relationship for 
either, F(1, 16) = 1.23, p > .05; F(1, 16) = 2.75, 
p > .05, indicating that the best and worst per-
formers were equally susceptible to costs result-
ing from attentional switches.

discussion
The results from Experiment 1 revealed both 

a significant disengagement delay preceding and 
a significant engagement delay following view-
port-actions. This increase is large, nearly tri-
pling action latency for both disengagement and 
engagement. This provides strong evidence that 
at a microlevel (i.e., individual actions), viewport 
movement hinders performance, and that limita-
tions in human attentional switching capacity 
represent a cognitive bottleneck in ANM.

We did not find a significant relationship 
between either disengagement or engagement 
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delay and performance. While this does not 
eliminate the limitation imposed by our novice 
participant pool, it does show that these delays 
are not artifacts of skill. Future studies should 
compare the effects of attentional switches 
between experts and novices.

Beyond identifying the microperformance 
impacts of viewport movements, Experiment 1 
provided evidence for the effectiveness of PDM 
in ANM by successfully identifying the pres-
ence of a fundamentally cognitive phenomenon 
through behavioral indices. We believe that 
these methods can be extended to real-time 
monitoring of operator cognitive states, which 
can trigger adaptations to the user interface.

exPeriMent 2
Motivation

Our first experiment demonstrated that we 
could characterize micro performance impacts 
of attentional switches in ANM through PDM. 
Our second experiment builds on these results 
by assessing the cumulative impact of atten-
tional switches in ANM and by seeking to facili-
tate attentional switches by improving the visual 
momentum in the interface. Visual momentum is 
the ease of extracting and integrating informa-
tion when operators move to a new point in a 
display (Bennett & Flach, 2012; Woods, 1984). 
Moving to a new location requires operators to 

disengage from their previous location, shift 
to the new location, and then engage with that 
new location. This process aligns with the three 
phases of an attentional switch described by 
Posner and Presti (1987), which suggests that 
attentional switches may be influenced by visual 
momentum. Woods (1984) posited that a key to 
increasing visual momentum is to provide the 
user with context that will allow them to more 
easily discern where they are in the interface 
relative to their previous location. We therefore 
implemented interventions that were aimed at 
providing this context to users when they moved 
to a new point in a display under the hypothesis 
that this would lessen the disengagement and 
engagement delays resulting from an attentional 
switch.

Methods
Participants. Nineteen participants (11 

male, 8 female; Mage = 23.16, SD = 3.02) were 
recruited via an emailed advertisement. The 
participants were engineering students with no 
prior experience in cybersecurity or prior 
knowledge of the experimental platform or par-
adigm. None of the participants were involved 
with the first experiment. Participants were paid 
CAD 40.00 for 2 hours of participation.

Experimental platform. The main difference 
between the experimental platform used in our 
second experiment and the one used in our first 
was that we added a minimap, which allowed 
users to see where their current viewport fell 
within the larger network (see Figure 4). The min-
imap could also show how a tag impacted scores 
throughout the entire network by showing wide-
spread color changes beyond the user’s current 
viewport. We built navigation control into the 
minimap so that the users could effectively jump 
to new points in the network by clicking on the 
corresponding point in the minimap, allowing for 
more efficient network navigation.

We overlaid recommendation boxes on the 
minimap as a new method for displaying recom-
mendations. These boxes suggested areas for 
inspection rather than individual emails. The 
recommendation boxes were a function of the 
average score of the emails within each possible 
box but with a minimum size such that the sys-
tem did not simply recommend individual 

Figure 3. Boxplots showing the distribution of action 
latencies across control actions, disengagements, and 
engagements. All outliers have been removed from 
this graphic.
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emails with high scores. Users could click on the 
recommendation box and their viewport would 
shift to that area. These were added to provide 
the users with additional capacity to use the min-
imap for navigation.

Our efforts to improve the visual momentum in 
the interface centered on the degree of context that 
was provided to the users when they navigated to 
a new area of the network via the minimap. This 
context was addressed through two interventions. 
First, we tried to increase the similarity between 
successive viewports when a user navigated via 
the minimap by assigning a proximity coefficient 
to the recommendation boxes such that they clus-
tered around the user’s current viewport. Second, 
we tried to provide users with a better understand-
ing of the directionality and distance of their mini-
map navigations by implementing a sweeping 
transition wherein the screen would smoothly pan 
to a new location in a continuous motion. These 
two interventions were, respectively, contrasted 
by conditions where the recommendation boxes 
had no proximity coefficient and where the screen 
simply updated in discontinuous cut when users 
navigated to a new location in the interface via the 
minimap. In each user trial, the interface had one 

of the two recommendation methods (proximity 
or global) and one of the two transitional methods 
(sweep or snap). These are summarized below and 
demonstrated in Supplementary Materials S3.1 
and S3.2:

 • Recommendation Method:

○ Proximity conditions: Recommendation boxes  
are the product of both the malicious con-
tent in the box and the proximity of the box 
to the user’s current viewport.

○ Global conditions: Recommendation boxes 
are only the product of the malicious con-
tent in the box.

 • Transitional Method:

○ Sweep conditions: Continuous panning 
transitions when navigating to new areas of 
the network via the minimap.

○ Snap conditions: Discontinuous cut when 
navigating to new areas of the network via 
the minimap.

In addition to adding features associated with 
the minimap, we also increased the size of the 

Figure 4. The experimental platform used for Experiment 2. The main changes that are visible 
are the size of the network and the presence of the minimap. Note that the recommendation boxes 
have been darkened for the purpose of this figure.
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network from 150 to 500 emails. This decreased 
the signal-to-noise ratio to better emulate real-
world operating scenarios and encouraged the 
use of the minimap. We also removed the score 
column from the recommendation table and the 
Top-K slider. These decisions were based on 
pilot testing and sought to encourage reliance 
on the network map, which would be consistent 
with how network operators are observed to 
behave (Werlinger et al., 2010). A full descrip-
tion of the experimental platform used in Exper-
iment 2 is provided in Kortschot et al. (2017).

Scenario design. We modified the scenarios 
from our first experiment in order to force partici-
pants to read the content of the email rather than 
simply scanning it for some of the characteristics 
that they had been warned about. In the modified 
scenarios, participants sought to identify a chain of 
users discussing a suspicious subject. The nodes 
representing the users who were involved in the 
target conversations were distributed over a greater 
portion of the network compared to the first exper-
iment, requiring more navigation. Each scenario 
retained the underlying island-hopping structure of 
the first experiment but had linearly connected 
emails, meaning that users who received an email 
in the conversation never responded to the person 
who sent them that email, instead sending a new 
email to a new member of the chain.

Each of the four scenarios involved users 
talking about something that was either illegal or 
against company protocol. The two illegal sce-
narios involved users discussing an embezzle-
ment scheme or discussing leaking confidential 
information to the press, respectively. The two 
protocol violation scenarios involved users 
requesting and sharing passwords through email 
or discussing confidential information (with no 
mention of leaking it to the press), respectively.

Experimental design. The two intervention 
dimensions (i.e., recommendation and transitional 
method) resulted in a 2 × 2 within-subjects experi-
mental design wherein participants completed 
four trials, each with a different pairing of rec-
ommendation and transitional method, and with 
a new scenario. All trials and conditions were 
randomized and counterbalanced to account for 
any learning effects.

Measures. Both interventions were centered 
on use of the minimap. As such, our analyses 

focused on minimap navigations rather than 
viewport navigations. The breakdown of action-
classes was identical to Experiment 1 in that we 
examined disengagement and engagement 
delays on either side of a shift (see Figure 2). 
However, instead of the shift action being pan-
ning and zooming, we focused on jumping via 
the minimap. Using this method, we observed 
how the abovementioned interventions influ-
enced the different phases of an attentional 
switch. Control actions remained identical to 
Experiment 1.

In addition to examining the effects of indi-
vidual attentional switches, we also sought to 
characterize the cumulative effect of these 
switches on task performance. To do this, we 
examined the average action latency, the total 
viewport movement, and the number of 
switches—all across an entire trial—and com-
pared them to the completion time of that trial. 
Completion time was measured as the time of 
the last malicious tag given by the user and was 
used as the principal performance metric. Once 
again, we observed ceiling effects with accu-
racy, with only 25 false tags out of the 380 total 
tags over the experiment.

Procedure. The procedure of Experiment 2 
was similar to Experiment 1 with some key dif-
ferences. Training was delivered through a nar-
rated video of a modified version of the 
PowerPoint from the first experiment (Supple-
mentary Material S4). Participants were encour-
aged to pause the video and ask questions of the 
experimenter, who also demonstrated some of 
the concepts on a sample network during 
planned pauses. The sole experimenter judged 
when participants were ready for experimenta-
tion. We do not believe that this presents a sig-
nificant limitation as we were again focused on 
microbehavioral measures related to switch cost 
rather than examining experimental perfor-
mance alone.

Prior to each trial, the participants were 
alerted to what marker they would be searching 
for. This was done after pilot testing revealed 
that participants had substantial difficulty find-
ing the target conversations, which looked very 
similar to benign emails at first glance. Follow-
ing each trial, participants completed a NASA-
TLX workload rating scale (Hart & Staveland, 
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1988) and a system usability scale (SUS; 
Brooke, 1996). These were included to assess 
the relative differences in usability or workload 
resulting from the experimental manipulations 
and not to compare against industry standards.

Results. We used the same outlier removal 
procedures from Experiment 1 to eliminate long 
pauses that were not reflective of disengage-
ment or engagement processes as well as double 
clicks. Again, a Wilcoxon rank-sum test was 
used for several of our analyses due to skewed 
data and an inability to fit mixed models to 
those data. Relative to the control condition (see 
Figure 2; M = 0.38 seconds, SD = 0.93 seconds), 
we found significant disengagement delays  
(M = 2.68 seconds, SD = 1.51 seconds; z = 
30.91, p < .0001) and significant engagement 
delays (M = 2.60 seconds, SD = 1.51 seconds;  
z = 33.24, p < .0001), resulting from attentional 
switches via minimap navigation. Figure 5 
illustrates these results.

We did not find a significant relationship 
between disengagement and engagement delays, 
F(1, 447) = 0.30, p > .05, indicating that pausing 
longer prior to making a jump did not alleviate 
the engagement delay following that jump.

Generalized linear mixed models on disen-
gagement and engagement delays between experi-
mental conditions found a significant effect of 
transitional method on disengagement delay, with 
sweeping transitions (M = 2.22 seconds, SE = 0.03 

seconds) shortening disengagement delays rela-
tive to snapping transitions (M = 2.60 seconds,  
SE = 0.03 seconds), F(1, 374) = 8.25, p < .001. 
The sweeping transitions also had a significant 
reduction in engagement delays (M = 2.21 sec-
onds, SE = 0.03 seconds) compared to the snap 
conditions (M = 2.46 seconds, SE = 0.03 seconds), 
F(1, 442) = 4.69, p < .05. Figure 6 illustrates these 
results. We did not find an effect of recommenda-
tion method on disengagement delays, F(1, 374) = 
0.01, p > .05, or engagement delays, F(1, 442) = 
0.03, p > .05.

Having again observed microperformance 
decrements of attentional switching, we then 
examined the cumulative, macroperformance 
impacts. To do this, we ran mixed linear models 
examining the relationship between completion 
time, average action latency, total viewport 
movement, and total number of actions. Com-
pletion time was measured as the time of the 
fifth and final malicious tag in each trial. If par-
ticipants failed to tag all five emails, the comple-
tion time was set to the maximum trial length of 
15 minutes. A trial’s average action latency was 
the average amount of time between successive 
actions across a trial. The total movement within 
a trial was the summation of both zooming and 
panning behavior, rescaled between 0 and 1, 
since zooming and panning were measured on 
different scales.

There was a significant negative relationship 
between the total number of actions and both the 
average action latency within trials, F(1, 48) = 
26.54, p < .0001, and the total movement within 
a trial, F(1, 48) = 7.59, p < .01. There was also a 
significant positive relationship between total 
number of actions and completion time, F(1, 48) = 
55.12, p < .0001. The average action latency 
across a trial had a positive relationship with the 
total viewport movement within that trial, F(1, 
48) = 10.69, p < .01, but not with the completion 
time of that trial, F(1, 48) = .02, p > .05. We did 
not find a significant relationship between the 
total viewport movement in a given trial and the 
completion time of that trial, F(1, 48) = 1.02, p > 
.05. Figure 7 shows the correlation matrix 
between the abovementioned variables.

There was no effect of either the recommen-
dation method, F(1, 46) = 0.43, p > .05, or the 
transitional method, F(1, 46) = 0.15, p > .05, on 

Figure 5. Boxplots showing the distribution of action 
latencies across control actions, disengagements, and 
engagements. All outliers have been removed from 
this graphic.
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completion times. However, there was a signifi-
cant interaction effect between recommendation 
method and transitional method, F(1, 46) = 7.15, 
p = .01, indicating that the proximity recommen-
dation method yielded faster completion times 
when using snap transitions but slower times 
when using sweeping transitions.

We also found that the transitional method 
significantly impacted the average action latency 
across a trial, F(1, 46) = 7.49, p < .01, with snap 
conditions eliciting shorter latencies on average 
(M = 0.41 seconds, SD = 0.04 seconds) than 
sweep conditions (M = 0.47 seconds, SD = 0.04 
seconds). We did not find that either the recom-
mendation method or the transitional method 
had any impact on the total movement within  
a trial, F(1, 46) = 0.07, p > .05; F(1, 46) = 1.99, 
p > .05.

We computed a single overall workload mea-
sure for each trial (Byers, Bittner, & Hill, 1989) 
and found that neither transitional method, F(1, 
48) = .20, p > .05, nor recommendation method, 
F(1, 48) = 2.31, p > .05, were significant predic-
tors of workload. However, we did find a signifi-
cant interaction effect, F(1, 48) = 5.00, p < .05, 
indicating that sweeping transitions yielded lower 
workload ratings in the global recommendation 
method but higher workload in the proximity rec-
ommendation method. There were no significant 
impacts on SUS scores across transitional method, 
F(1, 48) = .06, p > .05, recommendation method, 

F(1, 48) = .04, p > .05, or the interaction between 
the two, F(1, 48) = 3.02, p > .05.

discussion
Our results replicated the findings from 

Experiment 1, showing that participants suc-
cumbed to both disengagement and engagement 
delays when moving to a new viewport. These 
delays were longer in Experiment 2, likely as 
a result of the added capacity to make larger 
jumps.

The panning transition was designed to 
increase visual momentum by allowing users  
to grasp where they have navigated to relative to 
where they previously were (Woods, 1984). In 
the snap conditions, it may have been difficult 
for the operators to grasp any directionality of 
the transition, and it therefore took additional 
time to engage with the new viewport following 
a jump. We also found that the sweeping condi-
tions facilitated disengagement processes by 
showing a significant reduction in disengage-
ment delays relative to the snap conditions. We 
believe this result stems from improved visual 
momentum reducing the degree to which par-
ticipants needed to prepare for switches. We did 
not find an effect of recommendation method on 
engagement delays, contradicting the transi-
tional method finding. We had anticipated that 
disengagement and engagement delays would 
be lessened in the proximity recommendation 

Figure 6. (A) Boxplots showing the differences in disengagement delays between the two 
transitional methods used in Experiment 2. (B) Boxplots showing the differences in engagement 
delays between the two transitional methods used in Experiment 2. All outliers have been 
removed from this graphic.
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conditions due to new viewports being closer to 
prior ones, but this was not borne out by evi-
dence. This suggests that in spite of the shared 
context, a screen update requires significant dis-
engagement and engagement irrespective of the 
distance between successive screens.

Our second experiment also characterized the 
cumulative effect of attentional switches across 
an entire trial. We found a significant negative 
relationship between action count and action 
latency, indicating that as people sped up their 
actions, they performed more of them. Interest-
ingly, we did not find a significant relationship 
between average action latency and completion 
time, which shows that as people sped up their 

actions, they did not complete trials faster. These 
findings show that improving the speed at which 
a user interacts with the system on an action-by-
action basis does not necessarily improve the 
speed that they complete a task. Therefore, the 
wastefulness of actions needs to be considered 
when attempting to improve operator temporal 
performance.

The significant relationship between the total 
viewport movement in a trial and the average 
action latency from that trial indicates that the 
more people move throughout a network, the 
slower their actions become. It is consistent with 
our microfindings to attribute this to the cumula-
tive effect of disengagements and engagements 

Figure 7. A correlation matrix showing the relationships and distributions between completion 
time, total number of actions, average action latency, and total movement. Each point represents 
a single trial.
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across a trial. Surprisingly, we did not find a 
relationship between total movement and com-
pletion time or between average action latency 
and completion time. However, based on the 
strong correlation between action latency and 
movement, we suspect that this relationship 
does exist. This hypothesis needs to be studied 
further to make concrete conclusions and design 
recommendations.

We found a significant interaction effect 
between recommendation method and transi-
tional method on completion time, showing that 
in the sweep conditions, the global recommen-
dation method yielded the fastest completion 
times, whereas in the snap conditions, the prox-
imity method yielded faster completion times. 
We believe the most likely explanation for this 
effect is that in the proximity conditions the min-
imap navigations were to closer areas, as the rec-
ommendation boxes were clustered around the 
user’s current viewport. Participants may have 
therefore needed less context when navigating 
to those proximal areas, thereby reducing the 
need for a contextualizing transition. We also 
found that across a trial, the snap conditions elic-
ited shorter average action latencies than the 
sweep conditions, indicating that the snap condi-
tions accelerated the rate at which users inter-
acted with the system. It is unclear why this 
effect occurred and should therefore be studied 
at greater depth in future experiments.

Workload was not significantly impacted by 
either transitional method or recommendation 
method. We did find a significant interaction, 
suggesting that in the global recommendation 
conditions, sweeping yielded lower workload 
scores, whereas in the proximity recommenda-
tion conditions, snapping yielded lower scores. 
Again, we believe that this is the result of the 
recommendation boxes being further away in 
the global recommendation conditions and 
therefore the sweeping transition lowering the 
cognitive load of navigating with the minimap. 
In the proximity recommendation conditions, 
where minimap navigations were closer, the 
sweeping transition was less necessary.

We did not find a significant effect of either 
transitional method or recommendation method 
on system usability. This suggests that partici-
pants were tolerant to the various interventions. 

This nonsignificant result is telling. As partici-
pants did not find the interventions (i.e., sweep-
ing, proximity) to be less usable compared to the 
controls (i.e., snapping, global) in spite of their 
relative novelty, we believe that new interven-
tions aimed at lessening the cognitive load of 
operators should be sought after, regardless of 
their potential novelty to users.

General diScuSSiOn
Taken together, the results of our two studies 

demonstrate the adverse effects of attentional 
switching in ANM at both the micro- and mac-
rolevels. We provide uncommon evidence that 
the findings from the laboratory studies summa-
rized in much of the attentional switching litera-
ture generalize to a more complex task environ-
ment. We also showed that the disengagement 
and engagement phases of an attentional switch 
outlined by Posner and Presti (1987) translate 
to navigational tasks. Our results suggest that 
attentional switches may be prevalent in real-
world tasks and that the cumulative effects 
of these switches could be detrimental to 
performance.

It should be noted that trials in our study were 
limited to 15 minutes. The net effects of atten-
tional switches are likely greater when they 
accrue across a full work shift. This suggests 
that attentional switches represent an important 
aspect of operator performance and should 
therefore be considered in the design of future 
DSSs. Future work should examine the costs of 
attentional switches associated with real-world, 
nonnavigational tasks such as opening a new 
window or switching to a different application 
over the course of full operator shifts.

A novel finding from our experiments was 
the self-imposed preparation that participants 
demonstrated. Previous literature has demon-
strated that increasing preparation time facili-
tates attentional switching (e.g., Sohn & Ander-
son, 2001), but rarely do these experiments 
allow for participants to assume these prepara-
tory periods voluntarily. Recently, Longman  
et al. (2017) showed that voluntary preparations 
reduced the costs of a switch. We did not find a 
significant relationship between the duration of 
disengagement delays and their corresponding 
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engagement delays. However, the fact that  
participants were consistently incurring such a 
significant disengagement delay suggests that 
this delay either serves a purpose or is the result 
of a limitation in human cognition. Future stud-
ies should examine whether this behavior is 
exhibited across other attentional switches and 
whether or not this relationship can be facilitated 
through design.

The studies reported here also demonstrate the 
practicality and effectiveness of PDM within 
ANM. The cost of attentional switching has been 
difficult to study in real-world scenarios largely 
due to the need for highly sensitive time measures. 
However, if the user’s interactions are easily 
logged, PDM can overcome this issue. Beyond 
PDM’s ability to generalize time-sensitive mea-
sures like attentional switch detection to real-
world domains, we believe that it represents a 
promising method for inferring cognitive states. 
There has been a recent trend in the literature 
toward biometric readings for cognitive measure-
ment, largely motivated by the improved access 
and accuracy of these measures (Verwey, Shea, & 
Wright, 2015). Although increasingly accessible, 
biometric readings are still far more invasive than 
PDM (Balakrishnan, Durand, & Guttag, 2013). 
PDM can be implemented on many systems and 
imposes virtually no additional load on the opera-
tor. It is therefore highly feasible for domains 
where operators work long, sedentary shifts and 
wear minimal equipment. Future studies should 
continue to develop methods of inferring cogni-
tive phenomena and states through the use of 
logged operator interaction data.

While the current study demonstrated the 
efficacy of PDM for inferring cognitive events 
(i.e., disengagements and engagements), future 
studies should look at inferring cognitive states 
(e.g., stress, boredom, etc.). These are less likely 
to have direct behavioral manifestations and 
clear onsets and offsets and would therefore 
demand machine learning algorithms to be run 
on more continuous data streams such as cursor 
position. However, in spite of the increased dif-
ficulty, the potential utility of this research is 
extensive and can be directly applied to trigger-
ing adaptive interface behaviors based on opera-

tor measurement through PDM (Feigh, Dor-
neich, & Hayes, 2012).

cOncluSiOn

As machine learning and reasoning become 
more prevalent in ANM, the psychological 
demands of the human operators need to be 
considered to optimize the joint human-machine 
task performance. We have shown here that 
these demands can be successfully incorporated 
into the interfaces and algorithms that drive the 
DSS through the use of PDM.

Our study focused solely on attentional 
switching within ANM. However, with the 
growing size and complexity of both computer 
networks and the attacks on those networks, the 
psychological demands imposed on the operator 
will continue to grow. Therefore, in order to 
realize the full potential of the machine learning 
driving DSSs, a full spectrum of cognitive states 
should be studied and incorporated into the 
design of future systems.
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key POintS
 • Attentional switches are both preceded and suc-

ceeded by increased action latency relative to 
actions that do not involve a change of context, 
during which operators are likely preparing for or 
recovering from an attentional switch, respectively.

 • Additional movement over the course of a trial 
decreases the mean action latency over that trial. 
Decreases in action latency are correlated with 
decreases in completion time.

 • Providing context during attentional switches 
lessens both the disengagement and engagement 
load resulting from those switches.

 • Passive data monitoring is an effective and non-
invasive alternative to biometric data gathering 
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for inferring cognitive phenomena in operators in 
highly interactive domains.

SuPPleMental Material
The online supplementary material is available 

with the manuscript on the HF Web site.
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