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I. PROOF OF THEORETICAL RESULTS

A. Proof of Proposition 1

Before the formal proof, we first introduce the following
revised lemmas of GPI [1].

Lemma I.1. (Generalized Policy Improvement.) Let π∗
1 ,

π∗
2 , . . . , π∗

N be N optimal decision policies of N tasks
{Mi ∈ Mϕ}Ni=1, respectively, and let Q̃π1 , Q̃π2 , . . . , Q̃πN

be approximations of their respective action-value functions
such that∣∣∣Qπ∗

i (s, a)− Q̃πi(s, a)
∣∣∣ ≤ ϵ for all s ∈ S, a ∈ A and i ∈ [N ].

(1)
Define

π(s) ∈ argmax
a

max
i

Q̃πi(s, a). (2)

Then,
Qπ(s, a) ≥ max

i
Qπ∗

i (s, a)− 2

1− γ
ϵ. (3)

Lemma I.2. Let δij = maxs,a |ri(s, a, s′)− rj(s, a, s
′)|.

Then,

Q
π∗
i

i (s, a)−Q
π∗
j

i (s, a) ≤ 2δij
1− γ

. (4)

Now we are ready to prove Proposition 1.
Proof: Let Qπi

j,λ (s, a) = Qπi
j,r (s, a) +

λ
(
Qπi

j,c (s, a)− τ
)

be the balanced action-value function
of a parameter λ and a policy πi on task M c

j ∈ Mc
ϕ.

As previously mentioned, it equals to the Q function
of policy πi with a reward function in the form of
rλj (s, a, s

′) = rj (s, a, s
′) + λ (cj (s, a, s

′)− (1− γ) τ).
Then we can have

Q
π∗
j

j,λ∗
j
(s, a)−Qπ

j,λ̃j
(s, a) (5)

≤ Q
π∗
j

j,λ∗
j
(s, a)−Q

π∗
i

j,λ̃j
(s, a) +

2ϵ

1− γ

(
1 + λ̃j

)
(6)

= Q
π∗
j

j,λ∗
j
(s, a)−Q

π∗
i

j,λ∗
j
(s, a)− λ̃j

(
Q

π∗
i

j,c (s, a)− τ
)

+ λ∗
j

(
Q

π∗
i

j,c (s, a)− τ
)
+

2ϵ

1− γ

(
1 + λ̃j

)
(7)

≤ 2

1− γ
max
s,a

∣∣∣rλ∗
j

j (s, a, s′)− r
λ∗
i

i (s, a, s′)
∣∣∣

+
∣∣∣λ∗

j − λ̃j

∣∣∣ 1

1− γ
+

2ϵ

1− γ

(
1 + λ̃j

)
(8)

≤ 2

1− γ

(
max
s,a

∣∣ϕ (s, a, s′)
⊺
(wr,j − wr,i)

+ ϕ (s, a, s′)
⊺ (

λ∗
jwc,j − λ∗

iwc,i

) ∣∣+ τ (1− γ)
∣∣λ∗

j − λ∗
i

∣∣ )
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+
∣∣∣λ∗

j − λ̃j

∣∣∣ 1

1− γ
+

2ϵ

1− γ

(
1 + λ̃j

)
(9)

≤ 2

1− γ

(
ϕmax∥wr,j − wr,i∥+ ϕmax∥λ∗

jwc,j − λ∗
iwc,i∥

+
∣∣∣λ∗

j − λ̃j

∣∣∣+ ϵ
(
1 + λ̃j

))
+ 2τ

∣∣λ∗
j − λ∗

i

∣∣ , (10)

for any i ∈ [N ] and λ̃j > 0, where Eq. (6) is due to
Lemma I.1 and Eq. (8) is due to applying Lemma I.2, since
there exists an optimal policy π∗

i maximizing Qπi

i,λ∗
i

following
the strong duality Lemma 1.

□

B. Proof of Proposition 2
We first restate a convergence lemma in sub-gradient

optimization [2].

Lemma I.3. Consider the optimization problem

max
x∈X

f(x), (11)

where X ⊂ Rn is a convex set and f(·) : Rn → R is a
concave function. Let X∗ denote the set of optimal solutions.
Suppose that the update x(t+1) = PX

(
x(t) + η(t)γ(t)

)
is

applied, where γ(t) ∈ ∂f
(
x(t)

)
is a subgradient. If η(t) →

0,
∑∞

t=1 η
(t) = ∞,

∑∞
t=1

[
η(t)

]2 ≤ ∞ and the sequence{
γ(t)

}
is bounded, then x(t) → x∗ ∈ X∗.

Then the proof of Prop. 2 is given below.
Proof: Recall that the optimization problem for dual

estimation is

λ̃α
j ∈ argmin

λj≥0
max
πα∈Πc

V πα
r,j (s) + λj

(
V πα
c,j (s)− τ

)
. (12)

By assumption 2, the primal problem is feasible and let
V

π∗
α

r,j (s) denote the optimal value. Given the dual function
according to the Eq. (4) in the main paper

d (λj) = max
πα∈Πc

L(πα, λj)

= max
πα∈Πc

V πα
r,j (s) + λj

(
V πα
c,j (s)− τ

)
, (13)

the dual optimization problem is then

min
λj≥0

d (λj) . (14)

By Lemma 1, strong duality holds for the problem in
Eq. (12). Therefore, d(λj) ≥ V

π∗
α

r,j (s) for every λj ≥ 0 and
the set of optimal solutions in Eq. (14) is nonempty. The
dual function in Eq. (13) is also convex [3].

Let π∗
α,t ∈ argmaxπα∈Πc

L(πα, λ
(t)). The output of the

update step in Eq. 10,

i(t+1) = argmax
i∈[N ]

V π̃i
r,j (s) + λ(t)

(
V π̃i
c,j (s)− τ

)
, (15)



will give a value L
(
π̃i(t+1) , λ(t)

)
≥ L

(
π∗
α,t, λ

(t)
)

due to the
linearity of expectation in Πα. Therefore, L

(
π̃i(t+1) , λ(t)

)
=

L
(
π∗
α,t, λ

(t)
)
. Hence, the update step in Eq. 11,

λ(t+1) = PR≥0

(
λ(t) − η(t)

(
V

π̃
i(t+1)

r,j (s)− τ
))

, (16)

is optimizing with a subgradient V
π̃
i(t+1)

r,j (s)− τ ∈ ∂d(λ(t)),
which is also bounded since the value function is bounded.
Finally by the condition of the sequence of the step sizes
and Lemma I.3, which can be adapted to minimization of a
convex function, we conclude the proof.

□

C. Proof of Proposition 3

Prop. 3 can be proved by similar steps of the Prop. 4.1
in [4].

II. IMPLEMENTATION DETAILS

In this section we describe in detail of the environmental
setup and training details of our empirical studies. Four-
Room and Reacher are two benchmarks for RL transfer and
safety, and we adopted the similar configurations and hyper-
parameters used in [5]. We also introduced a challenging task
in SafetyGym, which has high state dimensions and complex
physical dynamics.

A. Four-Room

The state in Four-Room consists of agent’s 2-dimensional
location and a binary vector indicating whether an object
has been picked up, thus, S = J2 × {0, 1}18 where J =
{1, 2, . . . , 13} ⊂ N. The agent has 4 actions of moving
up, down, left or right. Each task has unique values of the
object rewards sampled uniformly between [−1,+1]. The
agent receives zero rewards in empty locations. Therefore,
some objects (with positive rewards) are beneficial while
objects with negative rewards should be avoided by the
agent. The goal state has a reward of 2, and the cost of the
unsafe traps is -0.1, which is consistent with the expected
cost E [c (s, a, s′)] = 5% × (−2) used in the uncertainty
environment of RASFQL. Each task is trained for 20,000
interactions with the environment with an episode length of
200. All 128 tasks are sequentially trained. Thus, the total
number of training iterations is 2.56 million. When started
in a new task, the successor feature is initiated from the one
learned in previous task. We then estimate the dual variable
and use policy transfer during transfer learning on the new
task. Some hyper-parameters of Q-learning in training are:
discount factor γ = 0.95, epsilon-greedy for exploration
ϵ = 0.12, learning rates for successor feature, reward vector
and λ are all α = 0.5. For dual estimation during transfer, the
learning rate η(t) = c · 1

t , where c = 1000 is a constant. The
threshold τ = −0.000005. Successor features are represented
with tables and computation is performed with CPUs. We
report results using means and standard deviations calculated
from 10 independent runs. Plots of per-task performance are
results averaged over 8 tasks.

B. Reacher

The state space S ⊂ R4 for the 2-link robot arm. Since
Reacher is an environment with continuous state and action
spaces, we discretize the action space to {−1, 0, 1}2 by
following prior work (SFQL and RaSFQL). The goals in
training tasks are located in (0.14, 0), (0, 0.14), (−0.14, 0)
and (0,−0.14). The locations for 8 test tasks are (0.22, 0),
(0, 0.22), (−0.22, 0), (0,−0.22), (0.1, 0.1), (−0.1, 0.1),
(−0.1,−0.1) and (0.1,−0.1). There are 6 unsafe round re-
gions centered in (0.14, 0), (−0.14, 0), (0.22, 0), (−0.22, 0),
(0.1, 0.1) and (−0.1,−0.1), respectively, whose radii are all
0.06. The reward is proportional to the negative distance d
between the robot arm end effector and the goal location
r = 1− 4d. The cost of the unsafe region is -0.1. Each task
is trained for 100,000 interactions with the environment with
an episode length 500. We use a two-hidden-layer neural
network for deep successor feature, where the size of the
hidden layer is 256. The network is trained using stochastic
gradient descent (SGD) with a learning rate of 0.001, a buffer
size 400,000 and a batch size of 32. Other hyper-parameters
are: discount factor γ = 0.9, epsilon-greedy for exploration
ϵ = 0.1, learning rate for the dual variable α = 10 and
threshold τ = −0.1. The reacher environment is provided
by the open-source PyBullet Gymperium packages [6]. The
model is trained with GPUs and each trail (sequential training
over 4 tasks) takes around 7 hours. We report results using
means and standard deviations calculated from 10 indepen-
dent runs.

C. SafetyGym

This environment has a larger state dimensionality S ⊂
R77. The state space consists of the following components:
readings from motor sensors of dimension 12, lidar readings
of all 4 types of objects (button, goal, trap and wall) in 16
angles surrounding the robot, which bring up to a dimension
of 64 in total, and finally a single-dimension indicator
variable to represent whether the agent is inside a trap.
We also discretize the action space in a similar fashion to
Reacher. The two traps are located in (0, 0) and (0.5,−0.5).
The goal is located in (0.5, 0.5). The two buttons are located
in (−0.5, 0.5) and (0.5,−0.5), therefore the former button is
in a safe region while the latter is inside a trap, we refer to
the former as ‘safe button’ and the latter ‘risky button’. The
robot starts in (−0.5,−0.5). The reward in this environment
is sparse, it is only obtained upon touching the buttons or the
goal. The trap has a cost of 1 upon entrance. We train 4 tasks
in total and in each task we alter the rewards of the buttons.
The rewards of the ‘safe button’ and the ‘risky button’ in the
4 tasks are (1, 4), (2, 1), (2, 5) and (3, 3) respectively. Every
task is trained for 200,000 steps with an episode length 500.
We use the same network used for Reacher. We use a buffer
size 100,000 and a batch size of 64. Other hyper-parameters
are: discount factor γ = 0.99, epsilon-greedy for exploration
ϵ = 0.25, learning rate for the dual variable α = 10 and
threshold τ = −0.001. We report results using means and
standard deviations calculated from 10 independent runs.



III. ADDITIONAL STUDIES

A. Constraint satisfaction

Unlike the risk-aware method that learns to avoid any re-
turn with variance, the constraint formulation is more flexible
in handling varying tolerance for violations. Fig. 1 shows
that by setting different thresholds, SFT-COP can satisfy the
constraints during transfer learning (Fig. 1d exhibits the Q
values are aligned with different thresholds). As expected,
SFT-COP has fewer failures when the threshold is tighter.

The reported curves over training task instances in this
paper are training results when sequentially transferred to
new tasks, with epsilon-greedy based exploration. Note that
SFT-COP can achieve almost zero constraint violation when
the exploration parameter is set to 0, e.g., Fig. 2 shows
that after task 64 the failures curve becomes flat compared
with continually increasing failures of epsilon-greedy based
training.

B. Ablation study

In this section, we show the effect of our multi-source
policy transfer strategy in Eq. (5) by comparing SFT-COP
against a transfer learning baseline that does not use this
strategy. This baseline copies the successor feature from
the previous task like SFT-COP and estimates the optimal
dual variable when learning on a new task during transfer.
However, it does not use Eq. (5) for policy transfer. Fig. 3
shows that although it can achieve a similar level of failures
during the sequential transfer learning, it collects fewer
rewards. The performance does not improve in later tasks
as shown by the flat curves. This suggests that without using
policy transfer, the learned Q function gives a poorer policy
that does not fully explore states.

C. Comparison with RASFQL

Fig. 4 and Fig. 5 compare SFT-COP with RASFQL in
the uncertain scenario on Four-Room and Reacher using the
same risk configuration as in [5], where upon stepping into
a trap or unsafe region, the agent only receives costs when
they become activated (with a probability of 5% and 3.5%
for these two environments, respectively). Results show that
SFT-COP provides a similar level of safety as RASFQL.

D. Additional results

Here we present all cumulative and per-task results of
failures and different kinds of rewards in support of Fig. 2
and 3 in the main paper. Fig. 6 plots additional results of non-
transfer comparison. We have tuned the baseline methods
and find that PDQL and CPO can only converge after a
larger number of steps (e.g. 350,000 steps on reacher for
CPO) to learn a safe policy. Fig. 7, Fig. 8 and Fig. 9 plot
the transfer learning results for Four-Room, Reacher and
SafetyGym, respectively. Fig. 10 present the test results of
averaged episode failures and rewards on the 8 test tasks of
Reacher.
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Fig. 1: Performance of SFT-COP with different threshold τ on the Four-Room domain. We compute accumulated (a) failures,
(b) rewards from safe objects, (c) rewards from unsafe objects and (d) the value of Qπ

c,j , over the training task instances.
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Fig. 2: Accumulated (a) rewards and (b) failures of SFQL, RASFQL (β = 2) and SFT-COP on the Four-Room domain
with the parameter of epsilon-greedy exploration ϵ set to 0 after task 64.
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Fig. 3: Performance of SFT-COP w. and w.o. multi-source policy transfer during sequential transfer learning on the Four-
Room domain. We compute accumulated (a) failures, (b) total rewards, (c) rewards from safe objects and (d) rewards from
unsafe objects, over the training task instances.
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Fig. 4: Performance of SFQL, RASFQL (β = 2) and SFT-COP on the Four-Room domain with probabilistic traps. We
compute accumulated and per-task (a, e) failures, (b, f) total rewards (c, g) rewards from safe objects and (d, h) rewards
from unsafe objects, over the training task instances.
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Fig. 5: Performance of SFQL, RASFQL (β = 2), and SFT-COP on the Reacher domain with probabilistic unsafe regions.
We report accumulated and per-task (a, e) failures, (b, f) total rewards, (c, g) rewards from safe regions and (d, h) rewards
from unsafe regions, over the training tasks.
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Fig. 6: Performance of PDQL and SFT-COP on the Four-Room (top row) and Reacher (bottom row) domains. We report
per-task (a, e) failures, (b, f) total rewards, (c, g) rewards from safe regions and (d, h) rewards from unsafe regions, over
the training tasks.
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Fig. 7: Performance of SFQL, RASFQL (β = 2) and SFT-COP on the Four-Room domain. We compute accumulated (a)
failures, (b) total rewards, (c) rewards from safe objects and (d) rewards from unsafe objects, over the training task instances.
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(a) Accumulated failures.
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(b) Accumulated rewards.
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(c) Accumulated rewards from
safe regions.
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(d) Accumulated rewards from
unsafe regions.
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(e) Task failures.
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(f) Task rewards.
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(g) Task rewards from safe re-
gions.
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(h) Task rewards from unsafe re-
gions.

Fig. 8: Performance of SFQL, RASFQL (β = 2), and SFT-COP on the Reacher domain. We report accumulated and
per-task (a, e) failures, (b, f) total rewards, (c, g) rewards from safe regions and (d, h) rewards from unsafe regions, over
the training tasks.
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(a) Accumulated failures.

0 1 2 3 4
Training Task Instance

0

1000

2000

3000

R
ew

ar
d

SFQL
RaSFQL
SFT-CoP

(b) Accumulated rewards.
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(d) Task rewards.

Fig. 9: Performance of SFQL, RASFQL (β = 2) and SFT-COP on the SafetyGym domain. We report accumulated (a)
failures and (b) rewards, and per-task (c) failures and (d) rewards, over the training tasks.
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Rewards from safe regions on 8 test tasks
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Rewards from unsafe regions on 8 test tasks
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Fig. 10: Performance of SFQL, RASFQL (β = 2), and SFT-COP on the Reacher domain tested on 8 test tasks. We report
averaged episode failures (top 3 rows), rewards from safe regions (middle 3 rows) and rewards from unsafe regions (bottom
3 rows), during the training course.


