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Abstract
In this work, we study and model how two factors of human cog-
nition, trust and attention, affect the way humans interact with
autonomous vehicles. We develop a probabilistic model that suc-
cinctly captures how trust and attention evolve across time to drive
behavior, and present results from a human-subjects experiment
where participants interacted with a simulated autonomous vehicle
while engaging with a secondary task. Our main findings suggest
that trust affects attention, which in turn affects the human’s deci-
sion to intervene with the autonomous vehicle.
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1 Introduction
Despite autonomous vehicles (AVs) rapidly gaining autonomous
capabilities, human monitoring or intervention remains important
to ensure safety. Understanding how human cognition affects such
interactions with AVs [4, 5, 7] is crucial for the design of systems
that mitigate errors and encourage proper usage.

In this late breaking report, we investigate how two major as-
pects of human cognition, trust and attention, influence human-AV
interactions. Previous work [12] had examined experimentally how
various cognitive factors moderate trust in automation. In contrast,
we seek to formally model the dynamic relationship between trust
and attention as the human interacts with the AV. Such computa-
tional models can be used to explain human behavior, guide AV
design, or to support robot decision-making [3].
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Figure 1: Probabilistic graphical model for the latent trust and at-
tentionmodel (specialized for our AV experiment). Unshaded nodes
represent latent (unobserved) random variables. Observed variables
are shaded. Due tomodel complexity, functional parameters used in
themodel are not shown. A decision to takeover controlOk depends
on the participant’s trustTk , their level of attentionAk and the type
of critical event Ck . Abbreviations for the remaining variables: S -
Subjective Trust Rating; B - Perceived Critical Event; E - Eyetrack-
ing;W - Workload condition; Y - Outcome of Critical Event.
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Figure 2: Map of the two simulated AV environments, annotated
with critical events. Best viewed in color.

To this end, we develop a probabilistic model that succinctly
captures how trust and attention evolve across time. Due to space
constraints, we focus our discussion on the model’s salient features
and our main findings from a human-subjects study designed to
validate the model. We conduct a Bayesian analysis and find that
trust affects attention (Tt−1 → At ). In turn, both trust and attention
affect the human’s decision to takeover control.

2 A Probabilistic Model of Trust and Attention
Our model aims to describe how humans interact with AVs across
time. Such interactions can involve a learning phase and an interac-
tion phase. In the former, participants passively observe the AV (e.g.
observing a demonstration). In the subsequent interaction phase,
participants are granted control over the vehicle, and may still learn
and update their trust during this second phase. Similar to many
human-robot collaboration tasks, there is a degree of risk involved;
modern AVs are still prone to mistakes and participants can choose
to initiate a takeover if they distrust the AV.
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Figure 3: 95% credible intervals for parameters of interest. Captions
on the y-axis indicate the priors used. (A) Credible intervals for
βT→A . (B) Credible intervals for βHL−NL

W→A and βML−NL
W→A .

Critically, the fact that such human-AV interactions unfold over
a relatively protracted period of time brings the human’s state of
attention into play. Our model explicitly captures this dynamic
interplay between trust and attention. We adopt the definition of
trust as a latent variable that summarizes the past interactions
with a robot/AV and captures one’s willingness to be vulnerable
with respect to the robot [3, 14]. We conceptualize attention as
the spotlight of our awareness, i.e., the process by which sensory
stimuli is selected for preferential processing [1]. in the context
of human-AV interaction, this corresponds to how much attention
one allocates to monitoring the behavior of the AV relative to some
other distractor task (e.g. browsing one’s phone).

Fig. 1 illustrates a model specialized for our experiment (Sec.
2.1) where we collected eye-tracking data, subjective trust ratings,
and whether the participants perceived critical events. The trust
(Tt−1 → Tt ) and attention (At−1 → At ) updates were modelled as
deterministic functions. All other relations were modelled proba-
bilistically, e.g., workload (Wt ) induced by a secondary task impacts
attention, and both trust and attention affect takeovers (Ok ).

2.1 Validation with Human-Subjects Study
Our human-subjects study was designed to test the veracity of our
model; specifically, whether the proposed model is consistent with
empirical data (H1), the workload experienced by subjects affects
attention (H2), and that trust in the AV affects attention (H3).
Experimental Design. Participants engaged with a simulated AV
using the CARLA [6] simulator. We used 2 different town maps
(Fig. 2) for the 2 different phases of the experiment. Participants
were required to perform a secondary arithmetic task displayed on
a second screen while engaging with the AV.

To assess their state of attention, we used a binocular Pupil Labs
eye-tracking headset [11], and surface tracking to automatically
label whether the subjects were looking at the AV simulator screen.

As per the model, the experiment was split into two phases. In
the first phase, participants were only required to indicate if they
perceived a critical event—their actions had no effect on the actual
outcome of the critical event. In the subsequent phase, participants
were allowed to intervene, that is, they could override the operations
of the AV, thereby affecting the outcome of a critical event. After
each critical event, participants were prompted to report their level
of trust in the AV on a continuous scale that ranged from 0 (no
trust in AV) to 100 (complete trust in AV). We also collected more
comprehensive and validated trust scores [13] but defer its analysis
to future work.

Study Procedure. 48 participants (Age=23.95 ± 3.16 years; 17 Fe-
male) with valid driving licenses participated in the study. We
removed 3 subjects that had incomplete behavioral data, and re-
moved 9 subjects whose eye-tracking data were unavailable due to
technical issues with the eye-tracker.

For the first phase, subjects were randomly assigned to one of
three experimental groups. In the No-Load (NL) condition, there
was no secondary task. The secondary task was designed to be
either medium-paced in the Medium-Load (ML) condition or fast-
paced in the High-Load (HL) condition. All participants were then
subjected to the ML condition for the second phase. Participants
were awarded points for every arithmetic problem they solved in the
secondary task, and penalized for missing critical events or crashes.
As a manipulation check, we assessed participants’ subjective task
load with NASA-TLX [9] at the end of the learning phase. The
Physical Demand subscale was ignored in our analysis as our task
involved minimal physical effort. The scores for the remaining
subscales were summed to derive a total workload score.

3 Results
For the manipulation check, we conducted a one-way Bayesian
ANOVA with the total workload score as the dependent variable in
JASP v0.11.1 [10]. The results suggest that our workload manipula-
tion had an effect (Bayes Factor = 1.915), with the data almost twice
as likely under the one-way model than the null model. Post-hoc
analyses with pairwise Bayesian t-tests, controlling for multiple
comparisons [16, 18], suggest that the ML group experienced in-
creased workload relative to the NL group (Adjusted Posterior Odds
= 5.982), but there was little evidence for any differences in the other
comparisons (Adjusted Posterior Odds < 1).

For our graphical model, we inferred the posterior distribution of
the latent variables using the Hamiltonian Monte Carlo algorithm
in PyStan v2.19 [2, 15]. Weakly informative priors were used for
all unobserved quantities [2]. We ran 6 chains with 8000 iterations
and 6000 burn-in, and assessed convergence via standard tests.

Following previous work [8, 17], we generated predictions from
the posterior predictive distributions to testH1. The mean posterior
predictions for variables S (trust) and E (eyetracking) were highly
correlated with the actual data (rPhase 1

S = 0.79, rPhase 2
S = 0.89,

rPhase 1
E = 0.98, rPhase 2

E = 0.97). Mean posterior predictions
for the binary variables B and O yielded AUCs of 0.71 and 0.67
respectively, suggesting that our model describes the data well.

We queried the posterior distribution of our graphical model to
test hypothesesH2 andH3. These two hypotheses are related to the
directed edges (W → A) and (T → A) respectively. LetWk , j = 1 if
participant j was in group k andWk , j = 0 otherwise. The functional
form that involves these edges is At , j = A(t−1), j + βT→AT(t−1), j −

βHL−NL
W→A

(
W

(t )
HL, j −W

(t−1)
HL, j

)
where the parameters of interest are

βT→A, βHL−NL
W→A and βML−NL

W→A . Their corresponding 95% credible
intervals are shown in Fig. 3. All credible intervals do not include
zero, suggesting that both trust and experienced workload affect
attention. Crucially, the negative sign of the coefficients imply (1)
that higher trust leads to lower levels of attention and (2) the higher
workload induced by the secondary task leads to lower attention.
A sensitivity indicated that the results are robust to the choice of
priors (Fig 3).
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